..;r?‘};? -r;.y;;@fj@i{}n F}
United Stetes Auny
Jﬁ

lt:}iﬁii’ésf__i} States ?_fifiﬂﬂ. ,c G
FAA Technical Center

C)’E)—“rrpj?" | by.
Monmouth College
:*:{}“r tatelk F‘?!EUUTJ
-JQE‘YQ‘I ity State C gHC—':‘J?)
| @ﬂéjrlﬁ“ Ex i

SIDFAEH Stz

REUSABLE SUBSYSTEMS FROM A
HIGH PERFORMANCE ADA COMMUNICATION SYSTEM

Thomas L. Chen & Walter Sobkiw
ECI Division, E-Systems, Inc.
St. Petersburg, Florida

ABSTRACT

The reuse of functionally equivalent software is
limited by performance and reliability requirements.
The reusability can be improved when the software
system is designed for each class of applications
following requirements established for a reusable
architecture. The reusable system is made up of
functional objects and binding objects that follow a
set of program paradigms. The functional objects and
binding objects in a class of applications are mixed
and recombined to achieve the best performance and
reliability according to the hardware and operating
system used to drive the application.

INTRODUCTION

The data communication industry, more than any
other industry, is obsessed with standards and
conventions. It can therefore be expected that there
is a high degree of reuse of existing software in this
industry. There is indeed a very high degree of reuse
in this industry. This is evident by the popularity of
SNA and DecNet. However, there is a continuous
stream of communication software being developed
from scratch. This is especially bothersome because
most existing network software facilitates the
installation of custom protocols where it is required.

The need for custom communication software is
justified by the performance and reliability provided
by existing software - on the hardware dictated by
the application - which does not meet the
requirement of the intended application. The
reusability of existing software is then limited by the
performance and reliability when it is installed on a
given set of hardware. This paper presents an
approach that manages reusability and portability
for high performance data communication software.

CURRENT SOLUTIONS

There are two current solutions where software
reuse has been successful. The first solution uses an
existing data communication software system,
augmented by custom protocols, that satisfies the
performance and reliability require-ments on the
hardware and is acceptable to the functional
applications.

The first solution is most desirable as long as the
hardware required to deliver the required
performance is not limited by: Tz

® Space

® Cost

® Reliability

o Weight

® Power consumption

® Processing speed

The second solution uses existing subroutines or
small software packages to support reusability for a
new functional application. This solution offers very
little saving because the majority of the software cost
is in the design, integration, and system test. Most of
the cost is not in coding and unit test.

Another possibility is the reuse of software
subsystems from existing software systems to build
high performance software for specific applications.
Approaches for using software subsystems as opposed
to whole software systems or small software units to
support reusability have not been extensively
studied. The advantages, disadvantages, and
problems associated with this third approach are not
well known,

7th Annual National Conference on Ada Technology 1989 411

CURRENT APPROACHES TO INCREASE
SOFTWARE REUSE

The current design methodologies, whether they
are structured or object oriented design, approach the
software reuse issue on the following two principles:

1. Identify common functions through implemen-
tation independent functional decomposition
or object identification.

2. Encapsulate the implementation of the
common function, discussed by Cox and Hunt

[1].

There has been a fair amount of success with this
approach. However, 15 years after the introduction
of structured system analysis, the software reuse
problem is still a subject of significant study.

LESSONS FROM SUCCESSFUL REUSABLE
SOFTWARE EFFORTS

There are many successful systems where parts of
the system are rearranged, or augmented with new
software, to form different applications. Most notable
are:

1. UNIX PIPE for text file applications
2. Transaction processing systems like CICS

These reusable software systems have the
following common characteristics:

® The software is only reusable in a Compatible
class of applications. The different appli-
cations in the same class can be as diverse as
an air cargo system or a bank debit system.

® A defined Binding Architecture that spells out
the different subsystems comprising the
system and defines how each piece should fits.

® Binding Objects that tie all pieces together but
do not directly add to the functional require-
ments of the application.

® Functional objects that are directly related to
the functional requirements of the application.

® All the functional objects and binding objects
are constructed to a compatible Program
Paradigm for the unique reusable system.

® Portable Language.

412 7th Annual National Conference on Ada Technology 1989

| e

It is interesting to note that these successful
reusable software methods were developed before
structure programming, structure system analysis,
and object oriented design were introduced into the
software community.

Figure 1 shows how the hardware community has
developed the capability to mix different subsystems
into an appropriate system that can support multiple
applications. This has been supported with the
definition of standard hardware “Binding” objects
that permit the linking of various functional objects
to other functional objects. An analogy between the
hardware and software community is shown in
TablesIand II.

FUNCTIONAL
OBJECTS

|rameee]

BUS INTERFACE
UNIT

BINDING
OBJECTS

VME CARD CAGE (VME BUS)]
I

BUS INTERFACE
UNIT

FUNCTIONAL
OBIJECTS

Figure 1. Hardware Reusability

N S o ol s s e B mp et i

Table I lists the hardware equivalents of the
reusable system characteristics. TableII lists the
different parts of the reusable software system
according to the required characteristics.

Table I. Hardware Equivalent Partition Example

Class of Binding Binding | Functivnal | Compatible | Portable
Application | Architecture | Object Object Paradigm | Language
Busbased | Bus Physical | Unigue VME Bus
computer specification | bus, pin | logicon multibus prutucol/
system layouts, | applica- hand-

and bus | tion shake
inter- boards

face

units

Table II. Reusable Software System Partition

Class of Binding Binding | Functional | Compatible | Purtable
Applicativn | Architecture | Object Object Parudigm | Language
UNIX text |- Textfile Pipe VO | Grep, cat, | Use V"
file manip- only redirec- | ls, type standard
ulation - Serial tion input

processing output
device
On line Transaction | CICS Transac- Six slep Cubul
Lransac- prucessing ipro- tion pro- prugram Fortran
tion pro- program- gram, grams cycle; FLI
cessing ming guide | transac- Atomic *Bal
tion operation
files and transaction
config- driver
uration
files)

*Nut purtable, reusable only.

We can also draw the following observations from
these successful software systems about software
reuse:

e Easy rearrangement of existing functions to
produce new applications is a key for software
reuse.

e A narrowly defined class of application is often
enough to support the additional cost of soft-
ware reuse.

e Exact match of function is not necessary for
reuse.

e Easy addition of new functions is essential.

REUSABLE HIGH PERFORMANCE
COMMUNICATION SOFTWARE DESIGN
APPROACH

The novel reusable software design approach
described in this paper is based on observations of
limited reusability in both the software and hard-
ware community and on two considerations which are
not advocated in current software engineering
practice.

The first consideration is acknowledging that the
total software solution includes extensive amounts of
software executable code used to support the binding
of the functional application software to each other,
to the hardware, and to the operating system
services. In this novel design process, there is a
conscious effort to separate the purely functional
pieces of software from all other software that is
dependent on the hardware and operating system
environment.

The second consideration is that the binding effort
and the selection of the hardware is not a one time
event in the life cyele of a software project. This is
especially true in the high performance embedded
system. This point was expanded upon in a
discussion about fault tolerance and performance by
Chen and Sobkiw [6]. Thus, if an effective
mechanism could be developed to isolate unique
“binding objects software” from “functional objects
software,” then not only will the potential for
reusability increase, but also during the course of
software development/modification, the effort may be
reduced as functions are bound in different ways to
support various stages of development. The
functional design of the application and the
elaboration of the binding effort, as well as the
selection of the hardware, can be carried out as two
independent activities if the two interfacing
activities are properly defined.

Figure 2 shows that there is an area of software
activity that eventually translates to unique code.
That software effectively allows the application to
become integrated with the operating system and
hardware services. This is shown conceptually in
Figure 3.

7th Annual National Conference on Ada Technology 1989 413

e o e = s i |

e b

. L

FUNCTIONAL
REQUIREMENTS

—

BINDING
OBJECT

/ HARDWARE
(PROCESSORS,
STORAGE)

OPERATING
SYSTEM

Figure 2. The Software Activity

A major piece of software is overlooked by today’s
design methodologies. This software binds the
functional software, operational software, and
hardware resources.

In structured system analysis the functional
design is bound to the operating system and
hardware after an implementation independent
analysis. The same can be said of the O0OD
techniques in which the unique hardware archi-
tecture is bound with the resulting OOD based
design. These design approaches were driven by two
assumptions.

The first assumption was that the software design
starts with an implementation independent analysis
which defines functions and data flows. Then, the
software functions are allocated to hardware
resources. Each group of functions in a hardware
resource can be allocated into software processes and
these processes can be designated as a collection of
procedures by structured system analysis or other
techniques. This one time procedure is seldom
successful. The allocation of processes in the data
flow diagrams are either done according to the target
system at the very beginning or are not used at all
when the final software processes are allocated to the
hardware. This practice is partly confirmed by Post
[4]. Chen and Steimle [9] illustrate the drastic
differences in the software design that performs the
same application function but delivers different
performance characteristics. A major portion of the
software design is unaccounted for in the solution.
The unaccounted for software in the design is the
software that effectively links the hardware

resources and operating system resources to the
applications software.

414 7th Annual National Conference on Ada Technology 1989

R s

FUNCTIONAL OBJECTS

BINDING OBJECTS

COMMUNICATIONS
BINDING TOOL
PIPES, IPC, DEVICE DRIVER

OPERATING
SYSTEM

Figure 3. System Layers
The binding objects are not unlike the transaction support
systems, provided by UNIVAC or IBM, that address non-
transaction oriented activities such as Fault Tolerant
communications. e

The second assumption was that the software
designer does not need to understand the hardware
being used in the system. In order to achieve
performance, unique hardware and operating system
control structures are used in the the final solution.
These structures control parallelism, manage
storage, address data integrity and other key system
characteristics. Karp [8] and Burger [5] elaborate on
this point. This discussion on the explicit control of
parallel activities and storage management can be
defined as a binding effort to mate the application to
the chosen hardware,

Figure 3 illustrates how the software in a system
can be seen as a layered collection of elements. At the
heart of this collection is the operating system which
mates all the software to the hardware. Next come
the languages, linkers, IPCs, and system con-
figuration files that not only translate application
program source code to executable code, but also
define the profile of the application and bind the
application to the services and facilities provided by
the operating system. The application gains the
services of the CPU and I/O by manipulating these
services. The next layer is the binding objects layer.
The outer layer of this collection of elements is the
functional objects. The functional objects must follow
the interface rules to the inner layer while satisfying
the functional requirements of the application.

A AR i L RO

&num..mwm...

rm; L ——

This picture is not new and there is an existing
model for this concept in the form of transaction
services. The transaction services of IBM, UNISYS,
and other computer vendors allow multiple
applications to be developed without recreating the
software that links the primary mission applications
software to the hardware and operating system
services. This shell can be extremely large in terms
of the total software effort depending on the system
characteristics.

Examples include the transaction processing
paradigm provided by Sperry TPS 1100 and CICS
supported by IBM. The binding objects are transac-
tion processing support software items provided by
the vendor. The transaction programs are discrete
programs provided by the user that satisfy the
functional requirements of the application. In the
case of Sperry, these programs must be coded
according to a style defined by TPS 1100 and follow
the interface rules to TPS1100. The same require-
ments are true for the CICS supported by IBM.

The issue is that if a software IC is to achieve
reusability then that software IC should be purely
functional in nature and not contain any “glue” to
bind it to hardware or operating system services. In
other words, the software IC should be separable from
the architecture of each application. In addition, the
success of a software “IC” is based on its firm, fixed,
accepted interface definitions which effectively
translate to the architecture of that software IC. The
binding objects in Figure 3 must present a standard,
well defined, well accepted interface to the functional
objects.

The step taken to design this system is a
pragmatic one. First, the architecture of the system
is laid out to contain all the characteristics of a
successful reusable system. Table III lists the archi-
tecture components of the reusable high performance
communication system according to the required
characteristics. Structured analysis, as well as object
oriented programming technique, is used to build the
functional objects and the binding objects as
illustrated by Chen and Sutton [3].

Table ITI. Reusable High Performance
Communication System

Class of Binding Binding | Functional | Compatible | Portable
Application | Architecture | Object Object Paradigm | Language
High UNIX 1PC, Protocols | Single Ada
perform: processes, shared | manage- select for
ance distributed | memory | ment multiple
software hardware shared entities asynchro-

dedicated disk file nous inputs
processer for | Ada % interlocked
asynchro- facade acknow-
nous inputs ledge

BINDING ARCHITECTURE

Within UNIX a high performance application
with asynchronous inputs is made up of UNIX
processes and device drivers. These UNIX processes
and device drivers can be distributed into various
hardware.

The UNIX processes are further divided into input
processes and principle processes. Each input process
is dedicated to an input. Sufficient input processes
are created so that there is always a free input
process available when the device driver receives an
input from any device. The UNIX processes com-
municate to the device driver through file VO.™ The
UNIX processes synchronize with each other through
shared memory, IPC, disk files, and interprocessor
IPC. The UNIX processes are distributed across
several loosely coupled processors.

Each UNIX process must be programmed
according to a program paradigm which is compatible
to the binding objects and the binding architecture.

Each UNIX process in this application is made of the
following components:

Binding objects:
® Main program

This is the software that ties all procedures
together to form a UNIX process.

® Systern Access Packages (SAPs)

This is a procedure interface to procedures in a
different process.

Functional objects:

These are the software packages that directly
relate to some application functional require-
ments.

7th Annual National Conference on Ada Technology 1989 415

BINDING OBJECTS

Binding objects are those software items that tie
all pieces of the application together but do not
directly support application functional requirements.

® Main program
The main program is the one single part that
ties all the packages together when the
subsystem is used as a process. This program
isindividually developed for each process.

® System Access Packages (SAPs)

The system access point is defined as a
software package which is independently
developed to connect functional objects in
different UNIX processes. Instead of inter-
facing directly, through IPC or shared
memory, the functional objects interface with
the system access point(s).

This concept is similar to the remote procedure
call elaborated on by Wilber and Bacarisse [2].
A SAP contains three main parts:

1. Server interface package — A package
specification.

2. Client interface package — A package
specification.

3. Body objects — Several body objects are

required for each SAP. There is one
package body for each interface.

FUNCTIONAL OBJECTS

Functional objects are those software items that
are directly related to the functional requirements of
the application. The functional requirements of a
data communication system can be partitioned into
the following functions according to the ISO 7 layer
model. The Data transportation functions are:
Application
Presentation
Session
Transport
Network
Link
Physical

The Management functions are:

® Monitor and record

® Network management

4168 7th Annual National Conference on Ada Technology 1989

Through standardization, each of component of
this model is reusable in different applications.
There are, however, many protocols. Therefore, each
application that wants to incorporate reusable code
must blend implementations of the protocols.

A high performance communication software
system can be made up of the following two groups of
UNIX processes:

Data transport:

® Front-end network process
® Back-end network process

Management entity:

® Monitoring and recording process

® Network management process

The Data transport subsystems have the following
characteristics:

® They implement parts or all of the ISO 7 la&é‘r -

functions above level 2 protocol. The two lower
level protocols are implemented as UNIX
device drivers.

® They transport data from one connection to
another connection. The sub-system usually
consists of a protocol part and a set of tables
describing each connection.

® They can easily be replicated and distributed
over many computer processors.

The Management subsystems have the following
characteristics:

® They communicate with all 7 layers of the ISO
model.

® They either provide a centralized control for
the whole communication system, or provide a
centralized repository for the whole
communication system.

® They can be distributed over many processors
only in a hierarchical manner.

In the implementation of a customized communi-
cation system, these subsystems are combined, or
split into a number of processes, and distributed on
the selected hardware (computers) according to the
operating system characteristics and the application
traffic flow to obtain the best performance for the
hardware chosen to host the communication system.

W e o s 1

[SRR

PORTABLE LANGUAGE

Ada is mandated by the contract for this data
communication system. Its package features enable
an elegant implementation of each SAP, shown in
Figure 4. Ada package specification provides a nice
Ada facade for each SAP that can be independently
compiled. The features provided by Ada are severally
hampered because each Ada linked output is
implemented as a single UNIX process. The very
large load module generated by Ada is also an issue of

concern.
PRIVATE IMPLEMENTATION

SYSTEM ACCESS PACKAGES (SAPs)

PROCESS B

 f]

Figure 4. System Access Package (SAP)
The SAP interfaces the functional application to the
operating system and hardware environment.

PROGRAM PARADIGM

All the functional objects must be constructed
according to compatible program paradigms for this
class of reusable system. This programming style is
developed in the traditional transaction processing
system shown in Figure 5.

Select an Input
Which input?

L 2 / B
Read Read Read Read
SAP SAP SAP SAP

Function | Function | Function | Function
2 3 4
Write Write Write Write
SAP SAP SAP SAP

Figure 5. Compatible Program Paradigm Loop

Each transaction program is made up of one or
more transactions. The transaction program accepts
asynchronous input only in one predetermined
location in the program. Each transaction is driven
by one unique input., The transaction processes the
input, updates related data base information, stores
intermediate results or generates output, then loops
back and waits for the next input. The programming
style can be illustrated by the following example
where a free style program is transformed to a
transaction program:

1. Read A --asynchronous input

2. ReadB --asynchronous input

3. C=A+B -—rmeemm- Function requires two
asynchronous inputs

4. WriteC

5. Loop

A transaction program to accomplish the same
requirement looks like the following. The sequence
in each column is a transaction,

1. Read AorB -- Home position wait for
inputs
2, IfA Else

3. IfBison queue 3. If Aison the queue

then then
getB -- get A --
Synchronous Synchronous
input input
C:=A+B C:=A+B
write C write C
Else Else

put A on queue put B on queue

exit or loop exit or loop

Synchronous inputs are inputs that the trans-
action can get on demand. These inputs are stored in
shared memory or in local disk.

7th Annual National Conference on Ada Technology 1989 417

CONCLUSION

Our attempt to build a high performance
communication system incorporating reusability was
marginally successful. We demonstrated that when
major functions are rearranged, a specific level of
performance can be achieved. We showed that
Functional objects are reusable and portable; that
Binding objects are reusable but not easily portable
to different operating systems; and the use of an
enumeration type makes the addition of a new
function difficult.

The ECI approach to reusability was attempted on
a high performance comm system with approxi-
mately 100K lines of Ada code. Although the
program did not specifically identify reusability
requirements, we did include an effort to identify
characteristics which supported reusability.

The design required several physical allocation
changes in the development cycle to achieve the best
performance and reliability goals. These changes
were accomplished with no changes in Functional
objects. This provided confidence that the function
aspects could be ported to different system hardware
platforms to combine with new Binding objects to
carry out the same application. This approach to
reusability accommodates the different architecture
requirements to achieve the best performance and
reliability in difficult hardware platforms.

In summary, this novel approach to reusability is
based on acknowledging that systems consist of func-
tional and architecture dependent code. Given this
assumption, the design process includes separating
functional code from architecture code early in the
effort and defining a binding mechanism that uses
existing services, the SAP and the mainline.

We recognize that our paradigm needs extensive
refinement and expansion to provide the level of
reusability needed in current Ada applications. ECI
expects to continue its research into the applications
of reusability in three existing programs, and will
attempt to expand its present data base to other
systems through several mechanisms now under
active research.

REFERENCES

1. Brad Cox and Bill Hunt, “Objects, Icons, And
Software-1CS”, Byte, August 1986, pg 161.

2. Steve Wilber and Ben Bacarisse, “Building
Distributed System With Remote Procedure Call”,
Software Engineering Journal, September 1987,
pg 148,

418 Tth Annual National Conference on Ada Technology 1989

3. T. L. Chen and M. Sutton, “Object Oriented
Design: Is It Enough For Large Ada System”,
Proceedings of 1988 ACM Computer Science
Conference, pg 529-534.

4. J. Post, “Application Of A Structured
Methodology To Real Time Industrial Software
Development”, Software Engineering Journal,
November 1986, pg 222-234.

5. A. H. Karp, “Programming For Parallelism”,
Computer, Vol. 20, No. 5, May 1987, pg 43-55.

6. W. Sobkiw and T. L. Chen, “Design For Fault
Tolerance And Performance In A DOD-STD-2167
Ada Project”, Proceedings of the Sixth National
Conference on Ada Technology, pg 424.

7. R. P. Wiley, “A Parallel Architecture Comes Of
Age At Last”, Spectrum, Vol. 24, No. 6, June 1987,
pg 46-50.

8. T. M. Burger and K. W. Nelson, “An Assessment
of The Overhead Associated With Tasking Facilities
and Task Paradigms In Ada”, SigAda, Vol. VII, No. 1,
pg 48.

=

9. T. L. Chen and C. L. Steimle, “Two Design
Approaches Using The Ada Language”, IEEE
Southeastcon 87, Vol. 1, pg 72.

BIOGRAPHY

Thomas L.C. Chen is a member of the Technical Staff
in the Software Systems Department, E-Systems,
ECI Division. He is the principle software designer of
Survivable Communications Systems, has over 25
years experience in the development of
communications methodology. He holds a M.E. from
Taipei Institute of Technology.

Walter Sobkiw is a senior principal engineer with
E-Systems, ECI Division. He is currently a member
of the Advanced Technology Team and is responsible
for defining system development methodologies and
new business pursuits. He holds a BSEE from Drexel
University.

o LRI g S A 0 et B M w7

PP ST T b A

