Proceedings of the
Sixth National Conference on
Ada® Technology

‘March 14-18, 1988

Sponsored by
United States Army
United States Navy

:- United States Air Force
| United States Marine Corps
Ada Joint Program Office

Co-Hosted By
Norfolk State University and University of Maryland

© Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO)

DESIGN FOR
FAULT TOLERANCE AND PERFORMANCE
IN A DoD-STD-2167 Ada PROJECT

WALTER SOBKIW and THOMAS L.C. CHEN
E-Systems, Inc., ECI Division at St. Petersburg, Florida

ABSTRACT

As computer hardware decreases in
cost, it becomes increasingly available
to software developers and computer
users. With this decrease, computer-
based system tools are finding new
automation applications, which tend to
replace manual tasks. Most of these
automation tasks require timely arrival
and accuracy of their product or output.

This has resulted in the development of
new requirements related to data inte-
grity and system availability. The
solution to preserving data integrity
" and providing for high availability has
been to develop fault tolerant computer-
based systems. This paper defines a
fault tolerant system design methodolo-
gy within the framework of DoD-STD-
2167 and the constraints of implemen-
tation in Ada.

INTRODUCTION

The formal system methodologies
utilized in the development of many of
today’s medium-to-large systems tend
to only address the functional system
requirements. They are usually top-
down oriented methodologies which rely
on structured systems analysis as devel-
oped by Yourdon and or Hierarchical
Input Processing Output (HIPO)
analysis as pioneered by IBM.

424 6th National Conference on Ada Technology 1988

The problem with these methodologies
is that they tend to ignore other aspects
of the system equally important to
accomplishing the system mission.
Specifically performance and fault
tolerance in the system are not
addressed in a methodical manner. In
addition, the impact of various issues
related to fault tolerance are not related
to the functional analysis or the
performance analysis of the system.

In the structured system analysis
methodology, performance is considered
to be a minor issue. The advocates
generally assume 10% of the units need
to be redesigned in any project to
support any unexpected computer
performance deficiencies. DoD-STD-
2167 defines a system development
methodology which relates system
development products to major program
milestones, however, the standard tends
to only focus on the functional definition
of the system with little emphasis on
performance analysis and no emphasis
on fault tolerant analysis.

This point of view has been disputed by
many practitioners and system users.
There are several articles documenting
practitioners and system users point of
view. These articles suggest that major
effort must be dedicated to fault
tolerance and computer performance in
the early phases of a design project, and

Wi R

that this analysis be refined as the
system design baseline matures.

To a very large extent, the maturation
of the design baseline is heavily
dependent upon the fault tolerant
analysis and computer performance
analysis of the system.

In the past, design for fault tolerance
and performance of computer-based
systems has been successfully achieved
without a widely accepted design
methodology. Examples of such
systems include Nuclear Power Plants,
the U.S. Air Traffic Control System.

Experience on an Ada fault tolerant
communications system at E-Systems
as well as experience in the design of
the new U.S. Air Traffic Control System
suggests that the design for fault
tolerance and performance can be
systematically accomplished by a series
of analysis. These analysis are aimed at

a certain class of questions to produce a

set of documented design alternatives
as the functional analysis of the system
is performed.

These documented design alternatives
can be eliminated or refined by the
restrictions provided by the computer
performance analysis, fault tolerant
analysis, design restrictions of the
hardware and operating system
characteristics, and the functional
analysis of the system. These studies
and trade-offs must occur in a timely
manner in conjunction with the
functional design of the system to form
the overall system architecture. To
some extent the level of detail at each
phase is driven by the 2167 standard.

The products associated with the design
of a fault tolerant system include an
availability model, a computer perfor-
mance analysis, and a failure analysis.
These products each take on a different
form and address specific issues at the
2167 major milestones. Many of the
fault tolerant key issues will only
surface after a methodical detailed
analysis of the system has occurred. The
specific implementation of Ada is one of
the key issues. The required solutions
for many projects is several orders of
magnitude larger than the solution
depicted by the implementation inde-
pendent function analysis of the system.

With the introduction of Ada, certain
constraints are introduced into the fault
tolerant design of the system. These
constraints are generic in nature,
related to the language and implemen-
tation-specific related to each vendors
particular interpretation of the Ada
specification. For example, the use of
rendezvous as opposed to semaphore is a
constraint on the design generic to the
language definition, while the particu-
lar design characteristics of tasking for
each vendor type is dependent upon that
vendor’s Ada implementation

PRESENT SYSTEM DESIGN
PROCESS OVERVIEW

The present system design process is an
iﬂteraﬁive process in which certain key
issues of the system design are surfaced
as the level of detail of the design
evolves. The design at the system level
can be summarized as follows:

e Requirements Analysis
e Functional Analysis
e Functional Allocation

6th National Conference on Ada Technology 1988

425

It is at this time, during system
architecture development, that the fault
tolerant strategy must be decided. For
example, will the fault tolerant strategy
be based on hardware, software, or
both? Will the hardware and software
in the system be built from the ground
up or will the system be built using a
combination of off-the-shelf hardware
and software and newly developed
hardware and software?

For example, Stratus Computer
Systems [3], [7] fault tolerant strategy
is based on hardware in which all the
hardware is replicated in a dual-dual
configuration. This fault tolerant
strategy may make sense if the driving
factor is fault tolerance in hardware as
opposed to software. If there are issues
associated with reconfiguration and
recovery time, then August systems [6],
[8JMR system may be of interest since
its reconfiguration and recovery is
inherent in its normal mode of voting
operations. If fault tolerant software is
a primary consideration, then perhaps
Tolerant Systems [3] or Tandem
Computers [3], [5] with their trans-
action processing facilities may be more
appropriate to the application.

These two vendors also may be
attractive if the fault tolerant software
may use innovative software error
detection mechanisms such as multiple
designs processing the same data and
comparing the outputs. [10]

If there is a tightly coupled application
that requires extensive amounts of
computer resources, then perhaps a
fault tolerant system must be built from
the ground up using IBM mainframe
like computers. [1], [4], [8],[9],[11]

426 6th National Conference on Ada Technology 1988

The IBM mainframe computers offer
extensive hardware error checking
capabilities with the CPU logic and
multiple instruction engines that can be
tightly coupled to shared memory.

As the system design process progresses
to lower levels of detail, certain issues
related to the use of Ada must be
resolved. The first question is, will Ada
be appropriate for the application in
question? Additional questions would
be: Will the entire system be Ada-based
or will there be some subsystems
implemented in C, for example? Will
the same Ada-based computer subsys-

‘tem share another environment such as

Unix and will the Unix environment
support another language such as
Fortran or assembly? Fault tolerant
implementation requires control
structures. Will these structures be
developed by the applications program-
mers in Ada or will co-existing
operating system services provide these
control structures?

These issues are surfaced during the
course of designing fault tolerant Ada-
based systems. However, the frame-
work of 2167 makes it difficult to
document the analysis and results that
lead to final requirements definitions
that resolve these issues in each
particular vendor design.

FAULT TOLERANT COMPUTER
DESIGN METHODOLOGY

Figure 1 identifies the major milestones
in the 2167 system development
methodology. Normally when the
standard is reviewed and the major
milestones identified, the design and
management staff view the design from

the main mission function which is to
define, develop, and design the
automation applications functions. For
example, if an air traffic control system
is being developed, then the primary
focus is identifying what the system is
suppose to do (i.e., define the system
functions) and how the system will
support those mission function (using
micros, mainframes, array processors,
ete.)

However the analysis of the system in
terms of availability and fault
tolerances becomes of secondary
concern. More important is that the
functions associated with a fault
tolerant mechanism are ignored.
Figure 1 also shows the major
milestones in a 2167 program and the
kind of activities associated with each

major milestone. Missing are the

products which show the fault tolerant

design baseline at each major milestone
and how the design effort arrived at the
fault tolerant baseline design.

Figure 2 has identified the DoD-STD-
2167 major milestones and mapped a
family of recommended activities and
products to support the design of a fault
tolerant system. These products are
summarized as follows:

Fault Tolerant Design Program

Plan

Generic Fault Tolerant Analysis
Availability Model
Static and Dynamic Computer
Performance Models

System, Hardware, Software, and
Operational Failure Analysis

SRR SDR SSR PDR CDR IMPLEMENTATION
P - PRELIMINARY - SYSTEM SEGMENT - SRS AND IRS - TLDD - SDDD - RELEASED VERSION
R SYSTEM SEGMENT SPECIFICATION = PRELIMINARY TLDD | - PRELIMINARY SDDD | — PRELIMINARY
0 SPECIFICATION - PRELIMINARY IMPLEMENTATION
b SRS AND IRS
u
=
=
S
i - REVIEW AND MODIFY | - IDENTIFY SYSTEM - IDENTIFY CsCI - IDENTIFY ALL C5CI - IDENTIFY ALL LLCSC CODE
¢ CUSTOMER A-LEVEL FUNCTIONS AND AND TLCSC AND UNITS
T SPECIFICATION INTERFACES - ALLOCATE SYSTEM - CODE
I FUNCTIONS TO CsCl | - IDENTIFY ALL COTS | - ALLOCATE LLCSC - DATABASE
v - SUPPORT THE ~ ALLOCATE SYSTEM HARDWARE AND TO HWCI, MAJOR POPULATE
| DESIGN CONCEPT FUNCTIONS TO - ALLOCATE C5CI TO SOFTWARE COMPONENTS AND
T WITH ANALYSIS GENERIC HARDWARE GENERIC HARDWARE SUBSYSTEMS DT&E
| SUBSYSTEMS - ALLOCATE CSC TO
E - SELECT LANGUAGE HWCI, MAJOR - ALLOCATE UNITS TO | - TEST CONCEPT
s - SUPPORT THE AND SYSTEM COMPONENTS AND ADA PACKAGES, - TEST DEFINITION
DESIGN CONCEPT CONTROL SUBSYSTEMS PROCEDURES, AND - TEST PROCEDURES
WITH ANALYSIS ENVIRONMENT TASKS - TEST RESULTS
- SUPPORT THE - SUPPORT THE
DESIGN CONCEPT DESIGN CONCEPT
WITH ANALYSIS "WITH ANALYSIS

Figure 1. DoD-STD-2167 Major Milestones and Expected Products

6th National Conference on Ada Technology 1988 427

SRR - Fault Tolerant Design Many times the mission can be

Program Plan redefined with less stringent
availability requirements and the

The System Requirement Review (SRR) gystem can exceed fault tolerant

is primarily used to review the customer expectations. For example, in the case

specification. Normally, the system of the communications systems being
developer has an initial concept of the developed by E-Systems, the availabili-
system and is able to identify problems ty requirements were defined with
associated with the customer specifica- centralized communications queues in
tion. These problems include function- mind. Some of these systems can be
al, computer processing performance made more fault tolerant with a
requirements, and problems associated distributed queue however, the
with availability and maintainability customer speciﬁcations would have
requirements. At this time, the made those designs non-compliant with
primary focus of the effort associated the overall system specifications. By
with fault tolerant definition shouldbe SRR, the program plans should be
an examination of the mission and the developed and available to all
availability requirements. personnel. This includes a stand-alone
SRR SDR SSR PDR CDR IMPLEMENTATION
P - MODIFIED A-LEVEL = AVAILABILITY - REFINED - REFINED MODEL - REFINED MODEL - FAILURE ANALYSIS
R SPECIFICATION MODEL RESULTS AVAILABILITY RESULTS RESULTS
0 REQUIREMENTS MODEL RESULTS - SOFTWARE
D - STATIC COMPUTER - DYNAMIC MODEL — REFINED FAILURE AVAILABILITY
v - FAULT TOLERANT MODEL RESULTS = REFINED STATIC RESULTS ANALYSIS: TLDD GROWTH PROGRAM
C DESIGN PROGRAM COMPUTER MODEL AND SDDD PRODUCTS
T PLAN - GENERIC FAULT RESULTS - REFINED FAILURE REQUIREMENTS §
5 TOLERANT ANALYSIS ANALYSIS: 5RS AND :
(COOK BOOK) - FAILURE ANALYSIS: TLDD REQUIREMENTS |
SEGMENT SPEC AND i
SRS REQUIREMENTS
A PACKAGE
C
T - REVIEW CUSTOMER - INITIATE = REFINE AVAILABILITY | - REFINE MODELS - REFINE MODELS = FAULT TOLERANT
I A-LEVEL AVAILABILITY MODEL PROGRAM PLAN
v SPECIFICATION MODEL - IDENTIFY CRITICAL - IDENTIFY CRITICAL
I RELIABILITY = REFINE STATIC C5Cl, TLCSC, AND C5CI, TLCSC, LLCSC, = GENERIC FAULT I
T AVAILABILITY = INITIATE STATIC MODEL HWCI. IDENTIFY UNITS, AND HWCI. TOLERANT ANALYSIS |
I REQUIREMENTS COMPUTER FAILURE MODES IDENTIFY FAILURE {
E PERFORMANCE - IDENTIFY SYSTEM, MODES = SYSTEM FAILURE
S MODEL SUBSYSTEM, AND - IDENTIFY CRITICAL ANALYSIS
SOFTWARE OPERATIONS AND - REFINE OPERATIONS
- IDENTIFY GENERIC FUNCTION FAILURE FAILURE MODES FAILURE ANALYSIS - SOFTWARE FAILURE
FAULTS AND MODES ANALYSIS
RESULTING ERRORS - IDENTIFY GENERIC - IDENTIFY ADA
ADA CONSTRAINTS IMPLEMENTATION - HARDWARE FAILURE
- IDENTIFY GENERIC AND SOLUTIONS SPECIFIC ANALYSIS
FAULT TOLERANT CONSTRAINTS AND
] FEATURES SOLUTIONS - OPERATIONS FAILURE
' ANALYSIS

Figure 2. DoD-STD-2167 Major Milestones and Recommended
Fault Tolerance Analysis Products

428 6th National Conference on Ada Technology 1988

plan to support fault tolerant design.
The Fault Tolerant Design Program
Plan identifies the inputs to the effort,
the product outputs, and the relation of
the fault tolerant products to all other
products on the program.

SDR - Generic Fault Tolerant
Analysis, Preliminary Availability,
and Static Computer Performance
Models

By Software Design Review (SDR)
there should be a generic architecture
solution. This solution identifies all

system functions, allocates those system .

functions to generic data processing
hardware, identifies the internal and
external interfaces and provides
supporting data to satisfy the system
performance requirements. At this
time, there also should be:

(1) supporting analysisin the tradeoffs
that show the generic architecture
solution; (2) the performance analysis
identifying the computer processing
performance at the function level; and
(3) an availability model.

This is a very critical time period for the
definition of the fault tolerant system,
since effectively the basic approach to
fault tolerance is chosen. This defini-
tion should include, for example, if the
system is to be characterized with large
numbers of hardware error checkers
capable of detecting transient errors or
is the system characterized with
software capable of detecting errors in
processing induced by the hardware or
software. This time period has
effectively identified the generic
approaches to implementing a fault
tolerant solution, developed computer

performance and availability models,
and traded off the various solutions in
overall program goals using the inputs
from the various models on each fault
tolerant architecture approach.

During this time, the program should
examine the state-of-the-art in fault
tolerance. This should be in the form of
a Generic Fault Tolerant Analysis
document that identifies various fault
tolerant features and their capabilities
in terms of dealing with various
hardware and software faults and
errors. This document also establishes
the fault tolerant definitions that will
be used throughout the program
development effort. These definitions
will include various generic ways in
which computer-based systems have
failed. In addition, if there is some prior
generation of the computer-based
system in operation, this document
identifies some of the more unusual
problems encountered in that previous
generation computer-based system.

This document needs to be detailed and
yet capable of being reviewed and
understood in a very short time period.
This document effectively forms a
‘cookbook’ of generic fault tolerant
approaches available to the system
designers. Just as an A-Spec is
developed to identify the mission of the
system, this document is developed to
identify various fault tolerant functions
and their missions.

For example, a Cyclic Redundancy
Check (CRC) attached by the software
and maintained during all data trans-
port processing can protect mission data
to a very high degree from a host of

6th National Conference on Ada Technology 1988

429

various system faults. That knowledge
may not be readily known or understood
by all the system designers (nor should
it be). In addition, each designer will
have an opinion about the effectiveness
of each fault tolerant function.

This document will, for example,
provide the official program position on
the effectiveness of range checking in
software versus the use of hardware
error checkers in the CPU hardware,
even if the program position is based on
qualitative analysis instead of quantita-
tive analysis. The issue is to capture
the analysis and make the findings
available to all designers during system
design.

SSR - System Failure Analysis,
Refined Models

The SSR is primarily focused on
software design. Effectively, the
generic architecture defined for SDR
has evolved to a more application
specific system definition. The
functions previously identified are now
allocated to Computer Software
Configuration Items (CSCI’s). Those
CSCI'’s are allocated to the generic
hardware architecture configuration.
At this time, the language should have
been selected along with the system
control environment. Will the system
be implemented in Ada using a real-
time Unix executive, or will the system
be partially implemented in Ada and C
with a custom designed real-time
control executive? Certain specific
implementation issues associated with
these software design selections need to
be identified and surfaced. In some
cases, new functions need to be defined

430 6th National Conference on Ada Technology 1988

to support the top-level software
architecture selection issues. At this
time, the fault tolerant design of the
system needs to continue refining the
computer performance and availability
models.

In addition, a formal failure analysis
needs to be initiated. That failure
analysis needs to begin identifying
various failure modes associated with
all system mission functions, defining
the potential harm of each failure mode
(some failure modes may be harmless),
and modifying the system baseline from
SDR to minimize the potential harm.
The output of this failure analysis
should be requirements that are
incorporated into the system SRS’s and
the System Segment Specifications.

This failure analysis should be
partitioned into system, hardware,
software, and operations. The failure
analysis should use the design products
developed to date and primarily focus in
on the SDR baseline design. The most
important products are the identifica-
tion of subsystems, major components,
software functions in the form of data
flow diagrams, and any single thread
diagrams.

The failure analysis should begin by
effectively performing a Black box
analysis on the automation system
where subsystems are removed from
operational service because of a failure.
Failed subsystems that result in
damage to on-line operations and
impact the availability requirements
are the most critical subsystems. When
a subsystem is removed from service,
the impact of that event should be

s |

documented. Those impacts include loss
of system data and mission functions. If
critical data or critical mission func-
tions are lost, then various solutions
should be identified for preventing the
loss of that data or system function
service. A starting point for all fault
tolerant solutions should be with the
generic fault tolerant features
identified in the fault tolerant analysis
effort used to support the SDR baseline.
Those generic solutions should then be
modified to support the specific
characteristics of the baseline.

Those approaches should be
documented and a tradeoff in terms of
the effectiveness of each solution and its
impact on the system architecture
identified. Many times the various
fault tolerant solutions have large
impacts on the computer performance
characteristics of the system, and so the
timing and sizing analysis needs to be
closely coupled to this tradeoff analysis.

The primary focus at this time should be
the system failure analysis, however,
the hardware, software, and operational
failure analysis can also begin at this
time. The other failure analysis efforts
will be refined during PDR.

PDR - Full Failure Analysis,
Refined Availability Model(s) and
Dynamic Computer Performance
Model(s)

The Preliminary Design Review (PDR)
consists of an architecture where all the
interfaces are defined and allocated to a
system configuration baseline, all the
CSCI’s, and Top-Level Computer
Software Components (TLCSC’s) are

identified and their requirements are
documented in the Top-Level Design
Document. At this time, the computer
performance model should have evolved

to represent the design in terms of the
TLCSC's.

In addition, a preliminary dynamic
model representing various queue
relationships and context switching
baselines should be providing the
designers with further definition of the
system performance characteristics.
The availability model should be
tracking the evolving baseline. The
architecture solution should be defined
in terms of a vendor implementation if
off-the-shelf hardware and or software
will be used in the system.

The fault tolerant analysis should now
switch to a failure analysis of the each
individual TLCSC and Hardware
Configuration Item (HWCI) in the
system. The TLCSC’s should be
characterized in terms of importance in
the system and the various failure
modes previously identified at SDR
should be allocated to the TLCSC’s
identified. In addition, each HWCI
should be characterized in terms of
importance in the system, and the
various subsystem failure modes
previously identified at SDR should be

~ allocated to the identified critical

HWCIs.

It is at PDR that the architecture
solution has transitioned from a generic
solution to a non-generic solution. The
Ada language has been selected along
with any Commercial Off-the-Shelf
(COTS) hardware and software. In
addition, the design of new hardware

6th National Conference on Ada Technology 1988

and software has begun to be constrain-
ed by various implementation issues.

For example, if a high speed communi-
cation bus is being developed the access
mechanism should be defined. Is the
bus Carrier Sense Multiple Access
(CSMA) or Token controlled? Isthe
physical plant fiber optic or copper
based? The same non-generic issues
related to fault tolerance also should be
surfacing at this time. Which TLCSC’s
and HWCI's are critical? For the
critical TLCSC’s and HWCI’s, what are
the error detection mechanisms? For
the critical TLCSC’s and HWCI’s, what
are the recovery mechanisms? How
long does it take to recover and will the
availability be satisfied? These are all
very detailed questions that cannot be
reasonably answered without a non-
generic architecture definition.

Itis at PDR that the generic constraints
of Ada begin to surface. Fault tolerance
is accomplished with error detection,
replication of the same design or alter-
nate designs, and routing via active
healthy paths. In the non-generic
architecture, these functional require-
ments translate to control structures.

For example, to protect data from dam-
age resulting from memory storage
failure data is replicated. This replica-
tion can occur in hardware or software.
However, after examining the market
place there are no vendors that offer full
data replication implemented in hard-
ware. This control structure must either
be implemented in the applications code
or the operating system services.

432 6th National Conference on Ada Technology 1988

In addition, to maintain consistency
before, during, and after a failure, the
mechanism grows into a sophisticated
sequence or control structures filled
with many potential design errors in
and of itself. In addition, once an error is
detected by either hardware or
software, recovery must proceed. This
recovery also must be in a consistent
manner to ensure that system data is
not compromised. These are all
elaborate control structures that must
be implemented in Ada by the
applications programmer from the
ground up.

This issue is further exacerbated by the
context switch time of many Ada imple-
mentations. In order to implement
many of these control structures in Ada
context switching needs to occur. This
context switch time can significantly
reduce the time left to support
application programming functions.
This issue is particularly acute in real-
time fault tolerant system design.

Some vendors such as Tolerant systems
have developed control structures and

made them available to the applications

programmer. In Tolerant’s case, these
control structures reside in an
augmented Unix look alike operating
system. The Ada ‘application’ code
executes with the augmented Unix look
alike operating system.

Itis at this time that the issues related
to interprocess communications and
process synchronization surfaces. There
are two basic process synchronization
schemes as depicted in Figure 3.

|
§
i
|
i
i
i
i
¢

SERVER
1

CLIENT
PROCESS

SERVER

2
SERVER

3

RENDEZVOUS - A BASIC MESSAGE PASSING
PROCESS SYNCHRONIZATION

A CLIENT MUST WAIT FOR SERVER, SERVER
MUST WAIT FOR CLIENT.

IN A UNI-PROCESSOR SYSTEM, A CONTEXT
SWITCH IS ALWAYS INVOLVED.

SERVER
1

CLIENT SERVER

PROCESS

2
SERVER

3

SEMAPHORE - A BASIC SHARED

PROCESS SYNCHRONIZATION

PRODUCER PLACES DATA IN QUEUES IN SHARED
STORAGE; CONSUMER REMOVES DATA FROM
QUEUES.

PRODUCER NEVER WAITS FOR CONSUMER AND
CONSUMER NEVER WAITS FOR PRODUCER.
CONTEXT SWITCH OCCURS ONLY WHEN THERE

IS A COLLISION ON THE SEMAPHORE WHICH 1s
VERY INFREQUENT IN THE REAL WORLD.

Figure 3. Rendezvous vs
True Semaphore

The first one is based on a semaphore
and requires shared memory. When
this scheme is selected the producer
process deposits its products in the
shared memory and the consumer
process takes the products off the shared
memory. The semaphore is used to
arbitrate the access of the shared
storage. A process context switch is
only required when there is a hit on the
semaphore. This is an old efficient
scheme which requires the support of

shared memory. The second scheme is
message passing. Two processes are
synchronized by expressly passing
messages to each other. When both
processes share the same hardware
processor, a context switch is always
required in synchronization. When
each process is supported by a different
hardware processor, one of the processes
will be idle waiting for the other process
unless the duty cycle of both processes
are perfectly matched. Tasking in Ada
is synchronized by rendezvous, which is
a message passing scheme.

In the semaphore scheme, the applica-
tion context and the queues need to be
secured for fault tolerance. In the
message passing scheme, the processes
(task table, stack, etc.), as well as the
application context, has to be secured
for fault tolerance.

A project can chose to use Ada tasking
or an operating system process in place
of Ada tasking. The choices of Ada will
also effect the selection of the hardware.
No Ada compiler in existence today can
allocate Ada tasks to a different
hardware processor nor is there any
support for rendezvous across hardware
processors. The nature of the applica-
tion may favor one scheme or the other.
The hardware architecture should
match the selected scheme. The
architecture design must weigh all
these interdependent matters to form
the lowest cost solution that is
technically practical. Many designers
would argue that this is an implemen-
tation issue, however, these two choices
can severely impact the architecture to
the point of invalidating the
architecture concept.

6th National Conference on Ada Technology 1988

433

CDR - Refined Products ready for
delivery to Software Availability
Growth Organization

By CDR, the requirements, analysis,
and design documentation should be
complete. This milestone effectively
gives the go-ahead for the contractor to
begin implementing all the hardware
and software. It is at this time that the
Ada packaging and procedure concepts
should be allocated to the TLCSC’s,
LLCSC’s, and units.

At this time, the failure analysis has
focused on the units, HWCI’s, and
resolved all issues related to the system
databases. The issues related to Ada
packages and procedures also have
been resolved with a clear indication of
how each package and procedure will be
supported with fault tolerant features.
The error detection, reconfiguration,
and recovery mechanisms should be
fully documented as requirements in
the specifications and those require-
ments should be justified in the availa-
bility model and analysis, dynamic
model and analysis, and the failure
analysis.

The failure analysis should have
identified all the design constraints
associated with developing a real-time
fault tolerant Ada system using the
selected hardware and accompanying
software. This analysis will then be
submitted to the organization tasked
with the software availability growth
program. This software availability
growth program should be fully
established and ready to begin its
activities with the test and integration
phase during implementation.

434 6th National Conference on Ada Technology 1988

It is at this time that the vendor
implementation of Ada will begin to
constrain the design of the system. For
example, the Ada task is not
constrained in DoD-STD-1815 and there
are a number of different vendor
implementations of this Ada task some
of which do not support true parallel or
concurrent processing. Thisissue is
particularly acute in a communications
system where concurrent I/O is to be
supported. There are also issues related
to the Ada load image and the
management of the heap. In both cases,
memory is consumed such that
embedded real-time fault tolerant
systems can be severely constrained.
These issues need to be surfaced and
resolved by CDR.

CONCLUSIONS

In conclusion, the design of a fault
tolerant system is similar to the design
of the main functional application of
that real-time system. The fault
tolerance analysis needs to begin with a
plan. That plan should not only contain
the approach and methodology to
supporting the fault tolerant design, but
it should also contain a heavy emphasis
on the technical aspects of fault _.
tolerance. Once this plan and cook book |
are established, then a failure analysis i
of the system needs to occur at each
level of the system design. This begins
with the subsystems and top-level
functions and concludes at the Ada
packages or procedures and the HWCI's.
The entire failure analysis should then
be packaged as one product and
submitted to the software availability
growth program organization.

5
B
Fo
&
E
#
g
§

During the course of the design, many
control structures used to support fault
tolerance will need to be developed.
Some of these control structures have
been implemented in external operating
system environments. Other structures
will need to be implemented in Ada and
will be limited by context switching
time. In some cases, some of the fault
tolerant control structures may need to
be developed in assembly language to
preclude the negative impacts of context
switching time.

As with all design methodologies, the
intent is to provide a vehicle for
identifying and controlling program
risk. Risk in this case is related to the
successful design of a fault tolerant
system. With the identification of these
products and related activities schedule,
cost, resources, and expertise can be
identified and planned to support a
successful fault tolerant design. More
importantly, the progress of the fault
tolerant design activity can be effec-
tively tracked during the entire design
process.

REFERENCES

1. IBM Journal of Research and
Development, IBM 3081 System
Development Technology Vol 26,
Number 1, Jan 1982.

2. Computer System Isolates Faults -

The Tolerant Systems Eternity
Series, Computer Design, Nov 1983.

3. Fault Tolerant Systems in

Commercial Applications, Omri
Serlin. IEEE Transactions on
Computers, Aug 1984, pp 18-30.

10.

11.

Fault Tolerant Computing -
Concepts and Examples,

David A. Rennels,Vol C-33, No. 12,
pp 1116-1129. IEEE Transactions
on Computers, Aug 1984.

Fault Tolerant Architectures
Douglas Eidsmore,

Digital Design, pp 70-82, Aug 1983.

Fault Tolerant Computers Ensure
Reliable Industrial Controls
Electronic Design, 25 Jun 1981

Making Processing Fail-Safe
Robert Fredburg, pp 255-264.
Mini-Micro Systems, May 1982.

Fault Tolerant Computer Study,
Jet Propulsion Lab, JPL Pub 80-73
Contract NAS 7-100, pp 2-1 to 2-51.

3

Survey of Fault Tolerant Computer
Security andComputer Safety

SRI International,

NTIS RADC.TR-86-164
I-1to1-26,1V-1 to IV-56.

An Empirical Study of Software
Error Detection Using Self-Checks.
Fault Tolerant Computing
Symposium July 1987.

Sung D Cha, John C. Knight,
Nancy G. Levenson, and

Timothy J. Shimeall, pp 156-162.

Fault Tolerance Principals and
Practice, T. Anderson and P.A. Lee
Computing Laboratory, University
of Newcastle upon Tyne, En gland.
I-1 to ITI-89.

6th National Gonference on Ada Technology 1988 435

? RS e

ERFSR R i P

Biography

Walter Sobkiw is a Senior Principal
Engineer with E-Systems, ECI
Division. He is directly responsible
for failure analysis, simulation
testing, and automation systems for
military communications systems.
He holds a BSEE from Drexel
University.

436 6th National Conference on Ada Technology 1988

dr

Thomas L.C. Chen is a Member of
the Technical Staff in the Software
Systems Department, E-Systems,
ECI Division. He is the Principle
Software Designer of Survivable
Communications Systems, has over
20 years experience in the
development of communications
methodology. He holds an M.E. from
Taipei Institute of Technology.

