Proceedings of the Sixth

Washington Ada Symposium
June 26 - 29, 1989

Sponsored By:
DC Chapter ACM & SIGAda

NASA Goddard Space Flight Center
Federal Aviation Administration

U.S. Army Information Systems Engineering Command

In Cooperation With:
American Institute of Aeronautics and Astronautics

BINDING AS A MECHANISM TO SUPPORT REUSABILITY
IN A DISTRIBUTED Ada COMMUNICATIONS SYSTEM

Thomas L. Chen and Walter Sobkiw
ECI Division, E-Systems,Inc.
St.Petersburg, Florida

ABSTRACT

An effective mechanism for supporting the
binding of functions is key to the support of reusable
software in a distributed communications system. By
adopting an architecture that recognizes the
distinctive role of functional objects - which are
directly traceable to functional requirements, and
binding objects - which serve only to bind the
functional object to the operating system services and
to the hardware, the portability and reusability of each
object is enhanced. This software architectural
approach also suggests a set of paradigms for the
binding objects. This paper describes a ‘novel’ binding
mechanism to support effective reusability, and will
raise issues for realistically achieving the goals of
reusability in distributed Ada oriented
communications systems.

INTRODUCTION

Reusability and portability have always been a
goal for large software intensive systems. This goal
was driven by the desire to minimize the effort required
to develop software which in many cases supported the
same application or minor variations of the same
application. A number of solutions have been proposed
and attempted with limited success. The present
approach for minimizing the long term software
investment is based on reusability in which functional
software integrated circuits (ICs) are bound to the
hardware by binding objects to form different
applications. (Software ICs, cox[2], can be defined as
components of general functionality, and used in
various applications. A goal for software reusability
would be to mimic the reusability success of hardware
ICs.) In all cases the primary goal is to minimize the
software investment. These concepts are extremely
complex and involve many aspects of the software
development activity.

COPYRIGHT 1989 BY THE ASSOCIATION FOR COMPUTING MACHINERY, INC.
Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

155

THE PROBLEM AND PRESENT SOLUTIONS
TO REUSABILITY

When software systems are developed, they tend
to be viewed in terms of their functional, operating
system, and hardware requirements. The operating
system and hardware requirements are driven by
various commercial offerings, or custom solutions
developed inhouse or combinations of commercial and
custom operating systems and hardware. Figure 1
illustrates this concept. Methodologies such as
Structured Systems Analysis and Object Oriented
Design (OOD) are based on this concept. The problem
with this view of the software activity is that the
critical software component is missing or is not
adequately being addressed in the design process. This
software element is what effectively binds the software
to the operating and hardware elements in the system.

FUNCTIONAL
REQUIREMENTS

BINDING
OBJECT

! HarRDWARE
(PROCESSORS,
STORAGES)

\
OPERATING \]

SYSTEM

Figure 1. The Software Activity

A major piece of software is overlooked by today's design
methodologies. This software binds the functional software,
operationing system software, and hardware resources together.

The encapsulation and inheritance advocated by
object oriented design are important mechanisms in
achieving the goal of software reusability. Cox [2]
clearly illustrates these features. What is not discussed
in this design method is that the functional software
architecture should not be encapsulated with the

hardware architecture or operating system services.
This can have a profound impact on the portability and
reusability of the application software components. In
structured system analysis the functional design is
bound to the operating system and hardware after an
implementation independent analysis. The same can
be said of the OOD techniques in which the unique
hardware architecture is bound with the resulting
OOD based design. These design approaches were
driven by two assumptions.

The first assumption was that the software design
starts with an "implementation independent” analysis
which defines functions and data flows. Then, the
software functions are allocated to hardware resources.
Each group of functions in a hardware resource can be
allocated into software processes and these processes
can be designated as a collection of procedures. This
one time procedure is seldom successful. The allocation
of functions in the data flow diagrams are either done
according to the target system at the very beginning or
are not used at all when the final software processes
are allocated to the hardware. This practice is partly
confirmed by Post [1]. Chen and Steimle [7] illustrate
the drastic differences in the software design that
performs the same application function but delivers
different performance characteristics. A major portion
of the software design is unaccounted for in the
solution. The unaccounted for software in the design is
the software that effectively links the hardware
resources and operating system resources to the
applications software.

The second assumption was that the software
designer does not need to understand the hardware or
operating system being used in the system. In order to
achieve performance, unique hardware and operating
system control structures are used in the the final
solution. These structures control parallelism, manage
storage, address data integrity and other key system
characteristies. Karp [3] and Burger [6] elaborate on
this point. This discussion on the explicit control of
parallel activities and storage management can be
defined as a binding effort to mate the application to
the chosen hardware.

THE SOLUTION TO REUSABILITY VIA
BINDING

The proposed novel binding approach design
method is different from OOD, which does not
distinguish architecture objects from functional
objects, and different from structured system analysis
and its derivatives, which considers software
architecture design a small ‘adjustment’ after an
implementation independent analysis of * the
requirements. This novel approach is based on two
considerations which are not advocated in the current
software engineering practice.

156

The first consideration is acknowledging that the
total software solution includes extensive amounts of
software executable code used to support the binding of
the functional application software to the hardware
and operating system services. In this novel design
process there is a conscious effort to separate the purely
functional pieces of software from all other software
that is dependent on the hardware and operating
system environment,

The second consideration is that the binding
effort and the selection of the hardware or the
operating system services is not a one time event in the
life cycle of a software project. This is especially true in
a high performance embedded system. This point was
expanded upon in a discussion about fault tolerance,
and performance by Chen and Sobkiw [4]. Thus, if an
effective mechanism could be developed to isolate
unique binder object software’ from ‘functional object
software’, then not only will the potential for
reusability increase, but also during the course of
software development/modification, the effort may be
reduced as functions are bound in different ways to
support various stages of development. The functional
design of the application and the elaboration of the
binding effort, as well as the selection of the hardware,
can be carried out as two independent activities if the
two interfacing activities are properly defined.

Referring back to Figure 1, there is an area of
software activity that eventually translates to unique
code. That software effectively allows the application
to become integrated with the operating system and
hardware services. This is shown conceptually in
Figure 2. As shown in Figure 2, the software in a

FUNCTIONAL OBJECTS

BINDER OBJECTS

COMMUNICATIONS
BINDING TOOL
PIPES, IPC. DEVICE DIVER

QPERATING
SYSTEM

Figure 2. System Layers
The binding objects are not unlike the transaction support
systems, provided by UNIVAC or [BM, but address non-
transaction oriented activities such as Fault Tolerant
communications.

system can be seen as a layered collection of elements.
At the heart of this collection is the operating system
which mates all the software to the hardware. Next
come the languages, linkers, Inter process
communications (IPC) mechanisms, and system
configuration files that not only translate application
program source code to executable code, but also
defines the profile of the application and binds the
application to the services and facilities provided by
the operating system. The application gains the
services of the CPU and I/O by manipulating these
services. The next layer is the binding objects layer.
This layer supports translation of functions into
processes, deflnes interprocess communication,
allocates processes to hardware, and supports backup/
failover operations. The outer layer of this collection of
elements are the functional objects. The functional
objects must follow the interface rules to the inner
layer while satisfying the functional requirements of
the application.

A close parallel to this concept is the transaction
processing paradigm provided by Sperry TPS 1100 and
CICS supported by IBM. The binding objects are
transaction processing support software items provided
by the vendor. The transaction programs are discrete
programs provided by the user that satisfy the
functional application requirements. For Sperry,
these programs must be coded according to a style
defined by TPS 1100 and follow the interface rules to
TPS 1100. The same requirements are true for the
CICS supported by IBM.

This picture is not new and there is an existing
model for this concept in the form of transaction
services. The transaction services of IBM, UNISYS
and other computer vendors allow multiple
applications to be developed without recreating the
software that links the primary mission applications
software to the hardware and operating system
services. This shell can be extremely large in terms of
the total software effort depending on the system
characteristics. More recently, the spreadsheet and
SQL-DBMS has provided a shell for a class of business
applications and data base management applications.
In the case of a communications system being
developed at E-Systems, 1/3 to 1/2 of the software code
was responsible for just binding the communications
software to the hardware and operating system
services. Communications is probably more unique
than other applications areas since extensive
interaction with the hardware is expected.

187

The issue is that if a software IC is to achieve
reusability then that software IC should be purely
functional in nature and not contain any "glue’ to bind
it to hardware or operating system services. In other
words the software IC should be separable from the
architecture of each application. In addition, the
success of a software IC is based on its firm, fixed,
accepted interface definitions which effectively
translates to the architecture of that software IC. The
binder objects in Figure 2 must present a standard,
well defined, well accepted interface to the functional
objects.

THE PROBLEM AND PRESENT SOLUTIONS
WITH BINDING

Ada has attempted to address the issues of
binding the applications software to the hardware by
providing a common architecture for what were once
considered languages and operating systems. The
design of the Ada language can be seen as an attempt
to absorb the binding objects into the language. Ada
however can also be implemented as a facade over
UNIX. If an Ada application is developed to execute in
a UNIX environment the designers will have access to
a unique hardware/operating system architecture. In
many cases control structures used to support many
unique requirements such as fault tolerances are left to
the Ada applications software developer and the level
of abstraction. The control structure may not be
sufficiently high in Ada, as found in the transaction
processing paradigm, to support these requirements
and a clean consistent interface between the
architecture and the functional application software
ICs.

There are a variety of traditional software
binding mechanisms available in different systems,
but what is available in one system is not always
available in another system. The conventional
primary binding mechanisms today are as follows:

e UNIX PIPE
e Inter Process Communications
¢ Shared Memory

e AdaPackage, Subprograms, Etc.

Each of the above binding mechanisms have
unique characteristics. The UNIX PIPE is a fully
dynamic binding mechanism in which each component
has no information about the connection. The path
could be via memory or Ethernet bus. The IPC is a
loosely coupled dynamic binding mechanism. The
software components do not have to be linked or
assembled together during system build time. The
components must know each others name and this can
be performed by hard coding the name or using logical
addressing via command line parameters. Shared
memory is a tightly coupled binding mechanism. Just
as in the IPC, the components do not have to be linked
or assembled together. Each component must know the

name of the shared memory and interface
synchronization mechanism. This can be either
performed by hard code or by command line

parameters. Ada is a static binding mechanism. Each
component must know the service and interfaces of the
connected software component. The binding is
completed at build time.

THE NOVEL BINDING APPROACH

The problem with these binding mechanisms
include inconsistent implementations between vendors
and the lack of supporting a higher level of binding
abstraction. It is not totally clear what the
requirements should be to support this high level
binding abstraction. Potentially the ideal high level
binding operators required to combine reusable
software objects into useful applications systems
should support the following kinds of requirements:

o Allocate software functions into software
processes

o Connect different software functions to the
same software process

e Connectdifferent software functions to a
different software process

¢ Channel inputs to the proper software function

¢ Channel outputs from a software function to a
proper device

o Allocate processes to hardware resources

Each hardware computer vendor could provide
such tools together with the performance data to the
applications integrator. The method of connecting
software must be established and standardized. This is
the foundation of reusability based on the software
IC concept.

158

The need for this function is illustrated by its use
in an Ada communications system. In this Ada system,
the software functions are allocated to processes which
are then allocated to hardware resources. The process
talks serially to hardware resources such as 'O devices
and executive resources such as device drivers.
Roughly 1/2 of the CPU power is used for functional
application processing and 1/2 of the CPU power is used
for communicating with cooperating processes and I/O
devices. The optimum architecture may be different
for each system even when the functional application is
the same. This is driven by unique requirements such
as fault tolerance. As shown in Figures 3 and 4 the
arrangement of function and processes is very sensitive
to traffic flow and reliability requirements.
Requirements such as reliability may specify backup
hardware, backup processes, or both. The issue is that
the functional software should be independent of these
architectures and their characteristics and the
effective implementation of these requirements should
be part of the binding mechanism.

SUBNET BACK-END M~
\-w{!ssmc PROCESSING i
e 1 1
—| FRONT-
END
== eROCESSING [~ ()
" SUBNET BACK-END ~——"
— PROCESSING PROCESSING iy
g9 A 5 H

SUBNET BACK-END
PHOCESSING PROCESSING

] 3 3 l
8 SUBNET BACK-END
PROCESSING PROCESSING FILE

4

a 4

FILE

/

FRONT-
END
PROCESSING

|~

Figure 3. Architecture A
An architecture that favors no cross subnet traffic and low
I/0 overhead system communications.

The 'novel’ binding approach has been applied to
a communications system at E-Systems. The intent
was to develop a software design based on the
assumption that a large portion of the software code
would be architecture dependent. As shown in Figure
5, the software design was partitioned into architecture
dependent components and functional dependent
components, They are as follows:

FRONT-
END

PROCESSING

A

SUBMET PROCESSING
1

SUBNET PROCESSING
H

BACK-
END
PROCESSING

FRONT
END

PROCESSING

Figure 5. Potential Software Method Supporting

I,
S

Figure 4. Architecture B

A communication systems architecture that supporls

blocking of data for high /0 overhead systems.

BINDING
OBJECTS
DESIGN

Software project can be partitioned in two separate design

activities.

SOFTWARE
DESIGN

Reusability

FUNCTIONAL
OBJECTS
DESIGN

159

e Binding Objects
— Main line procedure for each process
- System Access Package (SAP)
¢ Functional Objects
Figure 6 illustrates the Mainline process and
Figure 7 illustrates how the SAPs were used to bind the

functional Ada applications software to the hardware
and UNIX based operating system.

INITIALIZE PROCESS, SET UP INTERRUPT, SIGNAL
PROCESSING INITIALIZE SUBSYSTEM 1 ...

GET ASYN INPUTS

INPUT TYPE ID/

TYPE /

141
1-2 13| 14 1-5

SAP 1 SAP 2 SAP 3 SAP 4 | SAP 5

LOOP UNIT DONE

Figure 6. Mainline
The mainline does not contain any functional application
requirements.

As shown in Figure 6, the mainline procedure
developed with this ‘novel’ binding approach performs
a number of functions. It initializes the SAPs included
in a process by calling the initialization service entry
provided by each SAP included in the process. It sets
up the signal interrupt interface within the operating
system and relates the signal to the proper SAP. When
the initialization is complete it waits for the signal
interrupt. There is no functional application code in
the mainline. There is only architecture dependent
code as defined by the operating systems and hardware
sServices.

PRIVATE IMPLEMENTATION

PROCESS B

o MESSAGE

ey

RECORD (M5G)

SYSTEM ACCESS PACKAGES (SAPs)

Figure 7. System Access Package (SAP)
The SAP interfaces the functional application to the
operating system and hardware environment.

As shown in Figure 7, the SAPs are effectively
architecture dependent code paired with other
architecture dependent code or paired with I/O devices
(device drivers). The SAPs are implemented by one
single authority even though each part is linked to a
different process. This is a significant departure from
convention. The SAPs present themselves to the
functional code as an Ada procedure interface. In other
words, the socket of this software IC has the
characteristic of the Ada procedure call. The internal
structure of a SAP can change from one set of hardware
and operating system services (architecture) to another
set with no visible difference to the cooperating
functional software. Changes in the internal
implementation of the SAP will not change the
function of the application but will have a considerable
influence on the cost, throughput, and reliability of the
application. There are many SAPs in an application
but they can be categorized into a few groups according
to the architecture feature employed by the SAP. Some
of these features are intraprocessor IPC, interprocessor
IPC, and shared memory. SAPs of the same type are
differentiated by the data they support.

Figure 8 is a typical mainline procedure in Ada,
and Figure 9 is the Ada specification of the two objects
of a typical SAP connecting two cooperating functional
objects. Each SAP object is used by one unique
functional object to invoke the service of another
functional object. If the architecture requires that the
two cooperating functional objects be in the same
process, then the two SAP objects are both included in
the same process. The bodies of the twn SAP objects are
essentially null procedures that translate the entry call
from one specification to the other specification call. If
the architecture requires that the two cooperating
functions reside in different processes, then each object
in a SAP is included with its related functional object

160

into the proper process. The bodies of the two SAP
objects implement the proper interprocess
communication mechanism.

procedure MAINLINE is
FRONT__END_ SAP.INIT__SAP,
BACK__END_ SAP.INIT__SAP;
forIin1 « « NUM__OF__INPUT__ FILES loop
-- setup input signal processing
FILES_ IN(I) : = FD__MAP (I);
END loop;
-- wait and read any input
loop
FILE_ OUT : =IPC_ SELECT.CALL
(FILES = > FILES__IN,
WAIT = > INPUT TIME);
forTinle« NUM_ OF_ INPUT_ FILES loop

-- call the proper input processing procedures
according to the input file end loop;

end loop;

Figure 8. The Mainline Sets Up Interrupt Processing,
Waits for Input, and Activates the Proper
Function Procedure.

package MUX__CLIENT is
procedure INIT__SAP;
procedure RECEIVE__SUBNET__ MESSAGE;
procedure RECEIVE__MESSAGE__ACK;
procedure seee

end MUX _ CLIENT;

package MUX__SERVER is
procedure INIT__SAP;
procedure SEND__ SUBNET__MESSAGE;
procedure SEND__MESSAGE__ACK;

procedure sses

~ Figure9. Twoof the Assosciated Package
- Specifications in a SAP.

Table 1 summarizes the amount of code found in
the architecture dependent code and functional
application dependent code for an Ada-based
communication system at E-Systems. The mainline
and SAPs are system dependent software items. These
itemns are reusable in different applications in the same
hardware and operating system environment but are
not easily portable to distinctly different systems. The
rest of the software is functional application software
which is reusable in different applications and portable
to different systems.

In the examples illustrated it is clear that the
reusability of any code is limited by data type. Most
modern high level languages advocate strong type
checking. Software developed for one class of data
cannot be used to process another class of data even
when it is determined that the function is common.
However, different classes of data can be adapted to
architecture objects and functional objects by facilities
like the ‘generic’ in Ada.

161

Tue Aug 16 13:23:49 1988 shortcnt Page 1

Architecture Software Packages

Com- | Compat-

Pack- | Lines Blank ment ible State-

Subsystem Name | ages | InFile | Lines Lines Lines ments

Mainlines 72 12,635 | 1.865 1,824 B.946 6.172

Access specific 51 9,785 BT7 6,954 1854 1,249

Access packages 305 20,027 | 3,603 441 12,008 5,722

Total 22 908 13,143

Functional Software Packages
Lines Com- Compat-

Pack In Blank ment ible State-

Subsystem Name | -ages | File Lines Lines Lines ments

Data dictionary 23 13,38 | 1,080 2,474 9,833 1.764
T

Common functions 57 10,47 2,059 3,857 4,554 2,804
0

MMI functions 166 38,22 | 4.619 14,583 5,379

Front-end processing | 97 9,399 | 1,439 5,243 2,717 1,685

Back-end functions 133 2492 | 3,704 4,995 | 16222 8,776
1

Total 47,909 20,408

Architecture/ 48% 64%

function

TableI. This table lists the type of code produced for a
real time data communication application.
NOTE: In this multimedia communication

application, the codes that are dedicated to
binding the functional objects to the
hardware and operating system are a large
portion of the total code produced for the
application. These binding codes are unique
to each system, but are generic in nature.

CONCLUSIONS

Reusability is an extremely complex issue that
involves architecture, requirements, design and tools
such as an effective binding mechanism. In the case of
a communications system, there is a high probability
that 1/3 to 1/2 of the implementation code is machine
dependent. Since it is not likely that machine archi-
tectures will be standardized in the near future it is
reasonable to assume that any reusability effort on a
communications program will be only of moderate
success. In addition, for reusability to be successful,
interfaces between reusable components must be
standardized. In other words, an architecture must be
defined and accepted for each reusable component. The
Ada package and procedure constructs are an
important ingredient to support the effective definition
of reusable software interfaces. However, the
architecture definitions of large numbers of software
ICs prior to some initial transition steps may be too
high of a goal to achieve at this time. It is more
practical to assume that architectures can be more
readily defined and accepted for large pieces of software
subsystems such as a subsystem that effectively binds
computer architecture independent communications
functions to each vendors unique hardware
architecture,

This paper has defined a ‘'novel’ binding approach
to support reusability goals. This binding approach is
high level and applicable to several technology areas.
This binding mechanism begins by acknowledging that
the system development must be partitioned into
architecture dependent and functional dependent
software entities. An automated tool can and should be
provided to facilitate the architecture design which
binds the functional design. This tool can be used at
the inception of the software project with stubbed
functional components all the way through the
maintenance phase of the software project when the
changes in load scenarios and performance necessitate
architecture changes. The binding tool like the printed
circuit board and the BUS is the foundation ~°
software IC.

162

REFERENCES

1. J. Post, “Application Of A Structured
Methodology To Real Time Industrial Software
Development”, Software Engineering Journal,

November 1986, pg 222-234.

2. Brad Cox and Bill Hunt, “Objects, Icons, And
Software-ICS”, Byte, August 1986, pg 161.

3. A. H. Karp, "Programming For Parallelism”,
Computer, Vol. 20, No. 5, May 1987, pg 43-55.

4, W. Sobkiw and T. L. Chen, "Design For Fault
Tolerance And Performance In A DOD-STD-2167 Ada
Project”, Proceedings of the Sixth National Conference
on Ada Technology, pg 424.

5. R.P. Wiley, "A Parallel Architecture Comes Of
Age At Last”, Spectrum, Vol. 24, No. 6, June 1987,
pg 46-30.

6. T.M. Burger and K. W. Nelson, "An Assessment
Of The Overhead Associated With Tasking Facilities
And Task Paradigms In Ada”, SigAda, Vol. V11, No. 1,

pg 48.

7. Thomas L. Chen and Cheryl L. Steimle, “Two
Design Approaches Using The Ada Language”, IEEE
Southeastcon 87, Vol. 1, pg 72.

